Brick Battery

Researcher Julio D’Arcy from Washington University in St. Louis, Missouri, and his colleagues have done something incredible, they have turned bricks into batteries.

To do this, the team took ordinary construction bricks and heated them with acid vapor. This process dissolves the haematite mineral, which gives the bricks their red color. What’s left is a brownish-blue brick filled with tiny conductive PEDOT fibers that are coated with epoxy to make them waterproof.

At this point, the bricks can be hooked up to a power source to be charged up. Three bricks measuring 1.6 in. x 1.2 in. x 0.4 in. each can power an LED for 10 minutes. Amazingly, these brick batteries can be charged up to 10,000 times and retain 90+ percent of their storage capacity.

The researchers still need to do mechanical testing to check the strength of the bricks. If they can make it a viable building material and bring the cost down to a competitive rate, we could see building walls that we can plug our devices directly into.

Breakthrough In Solid State Batteries

Researchers from the Samsung Advanced Institute of Technology (SAIT) and the Samsung R&D Institute Japan (SRJ) have made a breakthrough in solid-state batteries. Solid-state batteries provide greater energy density up to 900Wh/L and utilize solid electrolytes. The problem with solid-state batterie has been the lithium metal anodes frequently used are prone to the growth of dendrites.  This reduces the battery’s life and safety.

To combat those effects the team, for the first time, used a silver-carbon (Ag-C) composite layer as the anode. By incorporating this Ag-C layer the researchers found that the prototype battery supported a larger capacity, a longer cycle life, and enhanced its overall safety.

This breakthrough opens up the possibility for long-range electric vehicles, off-grid electric systems for homes, and backup systems for various industries such as telecommunications.

Scientist Create A Device That Generates Electricity 24/7 From Water Vapor

Scientists at the University of Massachusetts Amherst have developed a device that creates electricity from the moisture in the air. Electrical engineer Jun Yao and microbiologist Derek Lovley’s device which they call “Air-gen” uses electrically conductive protein nanowires produced by the microbe Geobacter. When water vapor naturally present in the atmosphere comes in contact with these nanowires, current is generated.

This new technology is renewable, low-cost, and can  generate electricity 24/7. It’s even able to generate power in extremely low humidity areas such as the Sahara Desert.

According to the scientists, the current version of Air-gen devices can power small devices such as cellphones. The commercial version is coming soon.

Transparent Solar Cell Windows

A team lead by Kwanyong Seo from the Ulsan National Institute of Science and Technology, South Korea has figured out a way to turn solar panels transparent. The trick is to punch holes into the silicon cells that are 100 micrometres in diameter, around the size of a human hair. This process allows 100 percent of the light through.

This new method has two distinct advantages, the first is the process makes use of crystalline silicon wafers which is very common and found in about 90 percent of solar cells worldwide. The second is, previous transparent cells would give off a red or blue hue when light passed through them, the new method doesn’t have that issue.

In the coming years, Seo and his team hope to increase the efficiency of the cells, as well as, develop a transparent electrode.

The Nuclear Reactor Gets Miniaturized

An Oregon energy startup has reengineered the nuclear power reactor. They have created a modular reactor called the “Nuscale reactor” that is 1/100th the size of a conventional reactor and far safer. Nuclear energy accounts for two-thirds of the United States’s total renewable power output, the bad news is that many of them are outdated and need to be upgraded, or are reaching the end of life.

Since the Nuscale reactor is so small, many of them can be installed in clusters to accommodate specific areas power needs. It’s also easier to encase in safety devices and content in the event of an emergency. Each Nuscale reactor is capable of outputting 60 megawatts.

When it comes to cooling, the Nuscale reactor is cooled using normal freshwater just like a traditional reactor. The way the Nuscale reactor differs is that it uses gravity and buoyancy to naturally circulate the cooling water which is why it has such a small footprint.

Although modular reactor technology like the Nuscale reactor still has a ways to go as far as getting approval from the Nuclear Regulatory Commission, the technology promises clean plentiful energy just as good as wind and solar without the pitfalls.

Engineers Develop A New System To Convert CO2 Into Electricity

Engineers at the Massachusetts Institute of Technology have figured out a new way of removing carbon dioxide from a stream of air. The new system can work on the gas at virtually any concentration level, even down to the roughly 400 parts per million currently found in the atmosphere.

This new system uses a device which is essentially a large battery that absorbs carbon dioxide from the air passing over its electrodes as it is being charged up, and then releases the gas as it is being discharged. The whole system operates at room temperature and normal air pressure.

In their testing, the team has proven the system can withstand at least 7,000 charging-discharging cycles, with a 30 percent loss in efficiency over that time. The engineers believe they can get that number to 20,000 to 50,000 cycles with some tweaking.

When it comes to energy consumption this new system is very efficient using one gigajoule of energy per ton of carbon dioxide captured versus up to 10 gigajoules per ton using conventional systems and methods.

The engineers have set up a company called Verdox to commercialize the process, and hope to develop a pilot-scale plant within the next few years.

‘Artificial Leaf’ Produces Clean Gas In A Sustainable And Simple Way.

The University of Cambridge demonstrated that it can directly produce the gas—called syngas—sustainably and simply. They used an ‘artificial leaf’ (a silicon-based device that uses solar energy to split hydrogen and oxygen in water) powered by sunlight to accomplish this.

Inspired by photosynthesis two light absorbers, on the artificial leaf, act as molecules in plants that harvest sunlight is combined with a catalyst made from the naturally abundant element cobalt. When the artificial leaf is submerged in water, one light absorber uses the catalyst to produce oxygen. The other carries out the chemical reaction that reduces carbon dioxide and water into carbon monoxide and hydrogen, forming the syngas mixture.

Syngas is commonly used in fuels, pharmaceuticals, plastics and fertilisers. As an added bonus, the researchers discovered that their light absorbers work even under the low levels of sunlight on a rainy or overcast day. This opens up the technology to anywhere in the world and can be used from dawn to dusk.

Professor Erwin Reisner from Cambridge’s Department of Chemistry says the development of synthetic petrol is vital, as electricity can currently only satisfy about 25% of our total global energy demand. “There is a major demand for liquid fuels to power heavy transport, shipping and aviation sustainably”.

A Swiss Company Plans To Use Concrete Blocks To Store Energy

A Swiss company called Energy Vault has a unique and daring way to store energy. The plan is to use concrete blocks. What sets this system apart from other energy storage solution is that this system uses kinetic energy to provide electricity.

Energy Vault’s consists of an almost 400-foot tall, six-armed crane with custom-built concrete blocks that weight a little over 77,000 pounds each. The way the system works is, energy is siphoned from a renewable source such as wind or solar into an Energy Vault tower, then an A.I. system directs the concrete blocks to rise up. At night for example, when the energy is needed the blocks are returned to the ground and the kinetic energy generated from the falling blocks is turned back into electricity.

That kinetic energy then turns a motor, which passes through an inverter, sending the energy back into the grid with an efficiency of 80-90 percent. According to the company’s website, the Energy Vault comes in storage capacities up to 80MWh and can continuously discharge between 4 to 8 MW of power for 8 to 16 hours.

As of right now, the company doesn’t have a full-scale prototype built yet, however, in August the Japanese multinational holding firm SoftBank invested $110 million into the company. With that kind of backing, we may be seeing an Energy Vault very soon.

A Company Plans To Use Energy Kites To Produce Electricity

Many of us as kids flew kites and felt the force of wind when it catches the kite. A company founded in 2013 TwingTec plans to harness that power into electricity. The main principle behind the project is simple, at a height of 500 meters wind power is up to 8x stronger than at a height of 120 meters-which is the height of modern wind turbines. TwingTec’s kite device will use a rope and pulley system to connect it to a ground station. A generator that produces electricity is connected to the axis of the rope pulley.

The company has already tested a prototype device known as the T28 in Autumn 2018. With a wingspan of three meters, the T28 started from its base vehicle, climbed up into the air, circled autonomously for 30 minutes, produced electrical energy and finally landed safely on the launch platform.

The next phase is planned for November 2019 with there new T29 prototype. T29 will not only automatically take off and land, but will also generate up to 10 kW of electrical power and feed it into the grid.

Once the T29 launch is complete and successful, Twingtec plans to take the findings and use it to build the first series product, the TT100. This TT100 energy kite will have a wingspan of 15 meters, be able to take off and land automatically, and generate up to 100kW of electrical power—which would be sufficient for 60 single-family homes.

Looking ahead CEO Rolf Luchsinger says “he plans to build floating wind farms on the sea with his energy kites. There is plenty of space and wind, and energy-kites won’t bother anyone. This is precisely what wind energy needs to speed up the energy revolution.”

Researchers Develop A Way To Convert Radio Waves To Electricity

The Japan Science and Technology Agency (JST), Fujitsu Limited, and the Tokyo Metropolitan University announced that they developed a diode, that can convert low-power microwaves into electricity.


The new technology is expected to play a role in harvesting energy from radio waves in the environment, in which electricity is generated from ambient radio waves, such as those emitted from cellphone base stations.  Read the full article to learn more.